Учёные на пути создания терминатора Т-1000 «Жидкий металл»
Капли металла самостоятельно двигаются и меняют свою форму
- Для своего эксперимента физики из Австралии использовали малотоксичный жидкий металл - галлий.
- Изменение уровня кислотности, то есть концентрации раствора заставляет капли жидкого металла перемещаться в жидкости.
- Исследователи пришли к выводу, что такие свойства и характеристики материала можно использовать при создании, например, трёхмерных объёмных проекторов (этакая объёмная 3D-голограмма).
Результаты исследования австралийцев приближают нас к созданию пластичных устройств, некоторые из принципов работы которых аналогичны тем, что лежат в основе устройства «жидкометаллического» терминатора Т-1000 (произвольно меняет форму, агрегатное сосотояние и мимикрирует под других существ).
В общем, героя одноимённого сиквела культового фильма режиссёра Джеймса Кэмерона («Терминатор»-2). Киноманы не расстраивайтесь! В крайнем случае создадут электронные схемы из жидкого металла, или ничего не создадут.
Что такое «электронные схемы»? Дело в том, что в наши дни электронная схема на жёсткой полупроводниковой подложке - краеугольный камень в фундаменте всего, что относится к классу современной электроники: например, компьютеры, смартфоны, планшетники, навигационные системы, всевозможные средства связи, и так далее. Кстати, даже ваши «микроволновка» и «стиралка» содержат в себе микросхемы.
Так вот, результаты исследования австралийских физиков позволяют предположить, что когда-то в будущем электронные микросхемы будут состоять из жидкого металлического сплава, чтобы, например, менять свою конфигурацию в случае необходимости.
Умные мужики из Мельбурнского королевского технологического университета задались целью создать металлический сплав, который будет обладать важным качественным свойством в пределах определённого интервала температур и давлений - будет «жидкостью» при комнатной температуре, способной менять форму и даже перемещаться в пространстве.
Думаю, рано или поздно, военные заинтересуются этой разработкой, чтобы создать реальный, а не киношный прототип Т-1000. Что мне представляется более вероятным - в будущем электронные компоненты будут как коты - бегать от хозяев по дому.
Как бы там ни было, команда исследователей из Австралии только начала свой путь к намеченной цели. Для своих изысканий они использовали галлий - малотоксичный жидкий металл.
Одна из особенностей этого материала - широкий температурный интервал существования жидкого состояния (от 31 и до 2200 °C). Также он не подвержен коррозии, т.е. не ржавеет как отцовские «Жигули», а также несильно окисляется, покрываясь патиной как микросхема в стиральной машине.
Температура плавления чистого галлия - 31 °C, так что «чистокровка» не совсем подходит для эксперимента, ведь он становится жидким при 30 °C, а это, скажем, не совсем «комнатный» показатель.
Чтобы мечты о Терминаторе сбылись, физики использовали один из сплавов галлия - галинстан, который обычно содержит 68,5 % галлия, 21,5 % индия и 10 % олова.
Изменяя кислотность раствора (водородный показатель*), в которых были помещены капельки галинстана, они заставили их совершать «телодвижения» в растворе, а также менять свою форму, при этом капли не испытывали воздействие электрического или механического характера.
Словом, погружение капель галлия в раствор, в котором много ионов влечёт за собой их сильную деформацию, а ещё побуждает их к движению.
Водородный показатель - мера активности ионов водорода в растворе, количественно выражающая его кислотность.
Взяв за основу этот эффект, австралийцы создали гаджеты-демонстраторы: переключатели и помпы, которые перекачивают воду. Эти механические штуковины функционируют абсолютно автономно - капли металла совершают работу, а в движение их приводит «разность» составов раствора. На работу таких механизмов можно влиять, изменяя состав или концентрацию раствора, в котором находятся капли галинстана.
«В ходе ряда экспериментов нам удалось выяснить, что можно влиять на поведение сплава жидкого металла в растворе, не прибегая к использованию электромагнитных или механических «стимуляторов». Мы меняли концентрации кислот, оснований и солей в растворе, чтобы исследовать этот эффект. Пока точно неясно, как именно галинстан взаимодействует с окружающей его жидкостью, и что заставляет его перемещаться в пространстве», - прокомментировал профессор Курош Калантар-задэх (Kourosh Kalantar-zadeh), руководитель исследования.
Результаты изыскания, проведённого командой учёных под руководством профессора Калантар-задэха опубликованы в научном «глянце» Nature Communications. В этом журнале публикуются материалы научных исследований в области естественных наук, в частности по физике, химии, биологии и планетологии.
Ранее команда профессора провела похожее научное изыскание: тогда они исследовали процесс возникновения свободных электрических зарядов на поверхности капель «жидких» металлов, и как его можно использовать, чтобы заставить капли металла двигаться в нужном человеку направлении, выполняя полезную работу. Проще говоря, с мыслью о Терминаторе «разглядывали через лупу» статическое электричество на каплях галлия.
«Капельки» жидких металлов - сложный микромир: основная масса - металлическое ядро, проводящее ток, а также оболочка - тонкая плёнка, состоящая из оксида соответствующего металла. Именно этот внешний тонкий слой обладает полупроводниковыми свойствами.
Как полагает профессор Калантар-задэх, дальнейшие исследования «жидких» металлов, обладающих высокой электрической проводимостью в конечном итоге могут привести к созданию объёмных (трёхмерных) дисплеев и другой сложной, но пластичной электроники.
Профессор Калантар-задэх заключил: «В конце концов явления, описанные в нашем исследовании могут стать теоретическим базисом для разработки новых технологий, а это - первый шаг на пути создания гуманоидов принципиально иного типа, чем те, что уже существуют. Например, терминатор Т-1000, но более дружелюбный».